Space and Spaces

This is the title of a talk given today by Graeme Segal at Oxford’s Mathematical Institute. He gave this same talk last year as the Presidential Address for the London Mathematical Society, which means there’s a nice written version online here. I mainly mention this with the hope of one day understanding it properly, so forgive the sparsity of details.

One of the key ideas of the talk was to explain why we observe particles in nature, even though our best description of (most of) fundamental physics, quantum field theory, says that fields are the fundamental physical objects. To answer this question, one needs to think about the relevant spaces of states and observables, and one sees that noncommutative geometry enters essentially. The following nice quote touches on this:

In one way quantum field theory is enormously simpler than its classical counterpart, for there are no particles: the manifold of configurations is simply a space of smooth fields on M. In exchange for this simplification, the state-space can no longer be interpreted as an ordinary space: it is an object of non commutative geometry, and that is why when we look at the world we sometimes see particles and sometimes see fields.

To really understand what’s going on, it seems that some reasonably high-level mathematics is needed—Segal had hoped to formulate an explanation for non-mathematicians, but he couldn’t come up with one. A key result seems to be a theorem—a generalisation of the Stone-von Neumann theorem—that explains why we sometimes see particles and not waves: the theorem says that the algebra of observables on the state space of fields contains an algebra isomorphic to the observables on the tangent bundle of the configuration space of a collection of particles. I don’t understand the proof or surrounding discussion well enough to explain it further, so I won’t try, but merely plan to try sometime in the future. There’s much more in the paper about the notions of physical and mathematical spaces from the algebraic topologists perspective, but that’s even farther outside of my understanding.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s